Critical study of neural networks in detecting intrusions
نویسنده
چکیده
This paper presents a critical study about the use of some neural networks (NNs) to detect and classify intrusions. The aim of our research is to determine which NN classifies well the attacks and leads to the higher detection rate of each attack. This study focused on two classification types of records: a single class (normal, or attack), and a multiclass, where the category of attack is also detected by the NN. Five different types of NNs were tested: multilayer perceptron (MLP), generalized feed forward (GFF), radial basis function (RBF), self-organizing feature map (SOFM), and principal component analysis (PCA) NN. A KDD data subset containing 18,285 records manually chosen was trained in order to be tested on the KDD testing set. Our simulations show that the GFF NN leads to the best confusion matrix in the multiclass case. For the same case, the RBF performs the higher detection rate of the DoS attack category. In the single class case, the PCA NN performs the higher detection rate. a 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملDetecting Anomalous and Unknown Intrusions Against Programs
The ubiquity of the Internet connection to desktops has been both boon to business as well as cause for concern for the security of digital assets that may be unknowingly exposed. Firewalls have been the most commonly deployed solution to secure corporate assets against intrusions, but rewalls are vulnerable to errors in con guration, ambiguous security policies, data-driven attacks through all...
متن کاملIntrusion Detection with Neural Networks
With the rapid expansion of computer networks during the past few years, security has become a crucial issue for modern computer systems. A good way to detect illegitimate use is through monitoring unusual user activity. Methods of intrusion detection based on hand-coded rule sets or predicting commands on-line are laborous to build or not very reliable. This paper proposes a new way of applyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Security
دوره 27 شماره
صفحات -
تاریخ انتشار 2008